QUES 03:-

A train, standing at the outer signal of a railway station blows a whistle of frequency 400 Hz in still air.

- i. What is the frequency of the whistle for a platform observer when the train
 - a. approaches the platform with a speed of 10 ms⁻¹,
 - b. recedes from the platform with a speed of 10 ms⁻¹?
- ii. What is the speed of sound in each case? The speed of sound in still air can be taken as 340 ms⁻¹.
- **Sol.** Frequency of whistle, v = 400 Hz, speed of sound, u = 340 ms⁻¹ speed of train, $u_s = 10$ ms⁻¹
 - a. When the train approaches the platform (i.e., the observe at rest)

V' =
$$\frac{v}{v-v_s}$$
 $imes$ v = $\frac{340}{340-10}$ $imes$ 400 = 412 Hz.

b. When the train recedes from the platform (i.e., from the observer at rest)

$$V' = \frac{v}{v + v_*} \times v = \frac{340}{340 + 10} \times 400 = 389 \text{ Hz}$$

ii. The speed of sound in each case does not change. It is 340 ms⁻¹ in each case.